A desirable feature of a multistep method is that the local truncation error (L. T. E.) can be determined and a correction term can be included, which improves the accuracy of the answer at each step. Also, it is possible to determine if the step size is small enough to obtain an accurate value for
Adams-Bashforth-MoultonMethod:
Assume that f(t,y) is continuous and satisfies a Lipschits condition in the variable y, and consider the I. V. P. (initial value problem)
with
, over the interval
.
The Adams-Bashforth-Moulton method uses the formulas , and
the predictor , and
the corrector for
as an approximate solution to the differential equation using the discrete set of points .
Remark: The Adams-Bashforth-Moulton method is not a self-starting method. Three additional starting values must be given. They are usually computed using the Runge-Kutta method.
Precision of Adams-Bashforth-MoultonMethod: Assume that is the solution to the I.V.P.
with
. If
and
is the sequence of approximations generated by Adams-Bashforth-Moulton method, then at each step, the local truncation error is of the order
, and the overall global truncation error
is of the order
, for
.
The error at the right end of the interval is called the final global error
.
Adams-Bashforth-Moulton Method:
To approximate the solution of the initial value problem with
over
at a discrete set of points using the formulas:
use the predictor
and the corrector for
.
Comments
Post a Comment