The first type of Picard iteration uses computations to generate a "sequence of numbers" which converges to a solution. We will not present this application, but mention that it involves the traditional role of computer software as a "number cruncher."
Most differential equations texts give a proof for the existence and uniqueness of the solution to a first order differential equation. Then exercises are given for performing the laborious details involved in the method of successive approximations. The concept seems straightforward, just repeated integration, but students get bogged down with the details. Now computers can do all the drudgery and we can get a better grasp on how the process works.
Theorem 1 (Existence Theorem):
If both are continuous on the rectangle and , then there exists a unique solution to the initial value problem (I.V.P.)
(1)
for all values of x in some (smaller) interval contained in .
Picard's Method for D.E.'s
The method of successive approximations uses the equivalent integral equation for (1) and an iterative method for constructing approximations to the solution. This is a traditional way to prove (1) and appears in most all differential equations textbooks. It is attributed to the French mathematician Charles Emile Picard (1856-1941).
Theorem 2 (Successive Approximations - Picard Iteration):
The solution to the I.V.P in (1) is found by constructing recursively a sequence of functions
, and
(2)
.
Then the solution to (1) is given by the limit:
(3) .
Comments
Post a Comment