Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sScLQY9GyHgC-o8_kDS--w7Mk4KHcQ2t6h8aYcckjJgLFftvawYTO1LZeItE6I2iymZGiU4jg7oxbgh_I3CsATlEZB_xNJrVTNx6Nr2hC5jLylQAWv2uvKqV-ZTJZbUjBZ48oXle0GNh1WmPiHobcYpibzf2ArGxIe7FjtlV83hUdZs3u91Z08XNk5ygGbRgo=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v2GHrJywrJCrf6AC5ECAJqQUKOC1Ek-4zgJFu_U1EiN8m3tWU3c-V0D_wEy_pzpAQxLlsFVNiJ5b94AlYQrXp_WK57oqRLb6f3-8idVXpcqnIvS8PcXmhPyinJlv6EMLtKYJmwb2HQchs_9u862apr0a8C4cMU2qFlFe3bbDQlZy50Q6rS8tUamoIc-RYzhl8=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment