Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tSVeJO-oQi5gpFI0X9rcieaiWCfVRQm8MFebwZ3rr13cXlj4W__66JD-uIK66yT4zq-ubBnwzVFoD5RSw5ysMkHLfRUS27YWMPCo3WGc5Nz0BZ83UEBMsC6AAkNPlNotHsvdmHnTlbrLcO1t7gYfde1HCCsBs4EgMIGR-sYZvqoQiMKcPx-pcH3_SBpq0nJdQ=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_urf3mQd-ppTrZwb93b5_ZqGCBImPNZ_IQHHanougyejcbiFH_E0pwkZwG2SrgpA8Oq97WC11GyBP1ByzB4gKa5LfVrIQpLO83X5RjV92fa9bjyjxoagBKGany7iOL_MYShBcB9TzN2KjXPtZWlxAMC90nQx6n39i_7X3Ux9_vS8G-42Y3CjJfr9yBDlfq_4ek=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment