Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tjgLlI6wizZ62-LC3xIhMCMJHO6j9l5UIiP3NMppDtlYXKZfgWykw6eU_UoNyLxEZ_ifu6jvR_9c3p4cwWhAbkU8RkQYTupLG-O_q4iAu1t96z9Fppmu5ZMSaXmojLHIPw8o3v-7owrvc4td8WkpimIOGosZsIwIYsr5D9XYpNDI2gTkyfwZ-tAs5HNBpd4no=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sSO9HUQTZSyId1cfU3tGS6c8C-EmzlfvtPPac79S5bTUqaTgN19U5BU-CihVpWuZkVEKNxDu-WMoNkfCI82WAaD7QrnKZPIINoQIWijTUVI4vvOXCOkWGgwxiCmNAb1fE6VEkJ8qKTLEmwkIQPw-BCG3bPDVAjz8L6iwgbfJlNZhHHllysGMvpSast_tjaYDk=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment