Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s_NTtvf262JT5AvN-Pm4xX0zNOCbUTsVRVPkVlxC7uly0jOXxx0bvwbGuUiNxY8ZcVeXgHgm3T2vvtcexER9UWkyC_0OKkA03NXXjyOL5qxgNflDskTy3_y8cy4xCFkm6Wqh-kk8bDss2weJVH0Sdff7e5HzBG2MVLhIqB9yM1bc0Ip9v0A56t17-Ci9O6XbE=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sXH5C-q9Jee5Y_EcV5X8QrkwBILVcHUHTxNIQZgnCjmQfKQ6tTeCbklYG3s3FLOpuUmRW1qoWTfT3MPXl1rwkPoSumqmoT2fSn0xRy1qsxerWm20MbZTM1t-sNmZ9XdO6FU3gZvI9-lsgxiHikDOGArjJUR0-dKVysjqAc3RKFiXkYl5LzK5gURFYDMCz4oMk=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment