Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vql18mC1MtO3pE8UOqWc21KPC7t6wZvcYDZ4eVHz9VafS7sZdwwpF5zgdwwnHczzQCJH8xI-av2rIuO6aRMwIbC0crl73DnFTAcSxQr-Px73GB08FZ9c6xHDIuGc3WRoagxTOAMEU-RIAc_0Dah17Cf0CFYliYZIKUe-u2yrkakgW4Af9afToZx09ap9_Zy24=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v_6WtGmHANMRBk_E8CtPO-b9sY6Knm2FlCyS7GORNQhB3hHAcrK6EVBtuxz4Oe4XURnOjU2g47ox464OH5w4Qs317QNne5qr-P4exT8vFGtMr2Xbf0DuWdfUA88m4qEqD8Q9Y-Fdgob5Sopu66Qt9crJ9vklhLXNaWi9hs0xoMveZXaVq9_7bvAtiY1yCNV9Y=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment