Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_svfngpXwh9MG6HyYOzW70OrSj-j0FJZwG3D6ZbhxXzR5F78nxwCMV9q7COsEGvjimuRk94njZuE7uzdjwpLCJpNQHvQUzJdc5GPdTbbZcgZGPytBQSXI2-k0Hx_g4E0uteWus7n8ZHEMg1DfO0v4CrKSBKIZTfXGYZ_XZAMwqvmnb2WIo0OEUOOlXbArcCj7U=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tekxAmZyqb054OR0CyKLmHH_SdUeZcLTmsMvgPM4nFsgbtvHhhNQjfJ3hLZbOYcdYja9NP0FBDKKh1idjmeb3DT5y7v4qtgnO3Ff0xCwV44HHb5PXELT7JJP2aMW94XQ14OopOMk2hTKoXD7biHSYuXXDKS_SI3rMJT_mxoxhlctjNZsPLlpvU_fu6D7gk9cw=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment