Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ubiZXakYdYvBg1397jD6PtIUyp0Fzlc2AOmyDQqJZFdsc8FTb-B7w3cpeJxpCZCfB3o6fxKRzXdirEhYGAP0L5AKa_1ECYnToe-T0hARO92LHDjYrWEz-BiqDSbW-4vQWQZNIsmweYeXXGuqYmzkZ6t3fDHG66iDWkWHMxgjWeBxJQvIBBNuCl5iiYsY0EiSk=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vftkbVTg-d8pBbgZ2bR9DQdt4DCcVYRGncSV8agm9nu4t6-yI6Tuwzp72UnMlDuSMs7yXxxL1sCPKP6e9tINF6O5fuVAJu3LzMrisv0oEKzhIKR5e8gMpuc0MJbe5XqG5aHzJSCIKguP9QxC1LqhNxWnj4Qq8jo-2XdYgZdM-81fXfnI6g1lCbpqt444zDiEo=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment