Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_stdaCAUeZ72lsKZT-hVrUUbkI-OJCgBvkZ96vZrzrKYxJq5zUzm8QuzTR58b9gWNcIoKgs0p3hYHOPWYinHZdTT8r9ST7ej-SLXQ565fYoUjURkX5F-tFDMDK2c7ofUMnTUVD6Y8pVkEJiFlhOrWPePraLocWxge8hCa2NbPeoFUge4J89gFUzGQYmvEiqtKk=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sIMgrq-FhF1imTP-ePbJD8UhaKz6iH3zVDMsP6A5ViiflcMQV86LMra29Emn5NV3dzMB2WXKSJzekJR6jdgwbT3Yy_ShmTFg8h7oguck9wevF2fk9Vwkfqv-qzRupJzAJ9BcGhFbzLpRon3s3Qa1lb74SBoQScJjVvxawHaPlmhaW6vgqBNGkk6TUU6aox1Ek=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment