Lotka-Volterra Equations:
The "Lotka-Volterra equations" refer to two coupled differential equations
![[Graphics:Images/Lotka-VolterraMod_gr_1.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tBLS7QOfseRAKfEeyMrDtNqnhgvLS8RW5WusA3tdQhTAzMhcwNh88lq84aOrKgmQhN37QG-8umUNrFeu4opmagdM6zDvWTxX_pjh0Hig_a-Rm5fQ_hJ2rj4PPbplJ2Ch8qg7UT6zsEaAHM8RqgUOD914be4Yn_wCpAF40BH06-Pmr--_lS7xEbCPilFycmlhQ=s0-d)
![[Graphics:Images/Lotka-VolterraMod_gr_2.gif]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uiLi83UD4y_tjl2CvYHF3lfaqEag2E0DiBDLDORDOJpIz1MnQRWV9i2w_7GOOqxpXZXplz_L-Ohv7YjAetQuZ1jhT4u1_qahieR0YYWmkj7fYCNF515pisx2qHxW2TlLoqTlbQ2XhxLjxj-2Ql968KHQ9Z0xT0EGwRQfspf5wh_daWIAKO5TMxaia2_r9MLdo=s0-d)
There is one critical point which occurs when
and it is
.
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
.
The "Lotka-Volterra equations" refer to two coupled differential equations
There is one critical point which occurs when
The Runge-Kutta method is used to numerically solve O.D.E.'s over an interval
Comments
Post a Comment